Главная » Юриспруденция » Основные производители процессоров для пк. Выбор процессора для компьютера Какие фирмы производят процессоры для ноутбуков

Основные производители процессоров для пк. Выбор процессора для компьютера Какие фирмы производят процессоры для ноутбуков

Введение

Центральный процессор - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера; отвечает за выполнение операций, заданных программами.

Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова «микропроцессор». Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы, построенные на основе микросхем большой (БИС) и сверхбольшой (СБИС) степени интеграции.

Предметом работы является анализ рынка процессоров для современных персональных компьютеров и ноутбуков. Целью работы является рассмотрение производителей микропроцессоров, спектра их продукции, рассмотрение технических особенностей наиболее популярных моделей, их цен; анализ распределения и динамики рынка между производителями.

В конце работы делаются выводы относительно целесообразности выбора той или иной модели процессора для ПК среди представленных моделей Intel и AMD в соответствии с потребностями и финансовыми возможностями покупателя.

1. Классификация процессоров и их виды

Прежде чем рассматривать ситуацию на рынке микропроцессоров, определим диапазон устройств, попадающих под эту категорию и их виды. Классифицировать микропроцессоры можно по разным признакам. По целевому предназначению можно выделить такие виды:
-процессоры для серверов и суперкомпьютеров;
-процессоры для персональных компьютеров;
-процессоры для ноутбуков;
-процессоры для мобильных систем;
-процессоры для встраиваемых систем.

По виду архитектуры можно выделить процессоры с полным (CISC) и сокращенным (RISC) набором команд; по числу ядер: одноядерные и многоядерные.

Различными производителями микропроцессоров были разработаны свои архитектуры под процессоры для конкретного предназначения, например архитектура x86 была разработана Intel, сейчас повсеместно используется в настольных компьютерах, позже было разработано расширение для 64-разрядных компьютеров - архитектура х64, сохраняющая обратную совместимость с х86; сейчас процессоры для ПК на базе этих архитектур разрабатывают Intel и AMD. Другими примерами архитектур могут служить PowerPC (от IBM) и SPARC (от Sun), ориентированные на процессоры для высокопроизводительных серверов, рабочих станций и суперкомпьютеров.

2. Производители микропроцессоров

Весь рынок микропроцессоров для ПК изначально принадлежал двум компаниям Intel (в большей мере) и AMD. В последнее время как вариант дешевых и маломощных процессоров можно встретить процессоры фирмы VIA, но их доля на рынке не превышает 1% и они не могут составить сколь либо серьезной конкуренции процессорам Intel и AMD.

Intel Corporation (Санта-Клара, Калифорния, США) - крупнейший производитель процессоров для PC, также производит флэш-память, чипсеты, сетевое оборудование и др. электронику. Насчитывает около 80000 сотрудников, прибыль за 2009 год - $4.369 млрд., оборот за 2009 год - около $35 млрд.

Advanced Micro Devices (Саннивейл, Калифорния, США) - второй по объемам выпуска производитель процессоров, также производит флэш-память, чипсеты и видеокарты. Насчитывает около 10000 сотрудников, прибыль за 2009 год - $293 млн., оборот - около $5 млрд.

VIA Technologies (Тайбэй, Тайвань) - тайваньская компания, производитель чипсетов, процессоров и микросхем памяти. Не конкурент первым двум, но процессоры VIA уже можно найти и в Украине. На рынке микропроцессоров появилась в 1999г.

Стоит отметить, что первые две компании также производят в широком ассортименте микропроцессоры для серверов, высокопроизводительных рабочих станций, суперкомпьютеров, а также для нетбуков и мобильных устройств. Компания Intel, кроме того, ведет разработку микропроцессоров и микроконтроллеров для встраиваемых систем на базе родоначальника этого класса устройств - микросхемы 8051.

3. Обзор рынка микропроцессоров для персональных компьютеров

3.1 Процессоры Intel

Компания Intel выпускает большой ассортимент микропроцессоров самого различного назначения, производительности и цены:
-процессоры для настольных PC (процессоры семейств Intel Core, Intel Pentium и Intel Celeron);
-процессоры для ноутбуков (процессоры семейств Intel Core и Intel Celeron);
-процессоры для Internet-устройств (процессоры Intel Atom для нетбуков и неттопов и для мобильных устройств);
-процессоры Intel для серверов и рабочих станций.

Процессоры на основе технологии IntelCore i7/i5/i3 - это самое новое и высокопроизводительное семейство процессоров х86-64 для PC, включает в себя 3 линейки: Intel Core i7, i5 и i3.

Intel Core i7 - считается лучшим процессором Intel для настольных ПК. Использует быстрые интеллектуальные многоядерные технологии, которые обеспечивают прорыв в производительности игр и приложений, требующих больших объемов вычислений и активной работы с памятью.

Intel Core i5 - отлично подходит для работы с мультимедийными приложениями. Дешевле предыдущей модели из-за упрощения подсистемы памяти. Intel Core i3 - позиционируются как процессоры нижнего и среднего уровня по цене и производительности. Уступают в производительности i7 и i5, но дешевле.

Также популярны процессоры на основе технологии Core 2. Это семейство 64-разрядных микропроцессоров, предназначенных для клиентских систем. Включает в себя двухъядерные IntelCore 2 Duo и четырехъядерные Intel Core 2 Quard, а также 2-4 –ядерные Intel Core 2 Extreme. Выпуск начат в 2006 году. Это самые популярные из процессоров Intel в Украине. Используются в ПК и ноутбуках. Обеспечивают достаточно высокую производительность при сравнительно невысокой цене.

Другие процессоры Intel менее популярны, они представляют собой развитие старых моделей для бюджетных систем и ноутбуков средней и низкой производительности. Intel Pentium Dual-Core - семейство бюджетных двухъядерных процессоров Intel, предназначенных для недорогих домашних систем, основанных на микроархитектуре Intel Core и P6. Intel Celeron - упрощенная версия Pentium или Core 2. Более низкая цена и производительность ввиду снижения частоты системной шины и объема кэша второго уровня по сравнению с базовым вариантом. Intel Atom - одно- и двухъядерные процессоры для нетбуков архитектуры х86. Выпуск начат в 2008 году. Достоинство – низкое энергопотребление. Показатели производительности сопоставимы с Celeron.

Цены, установленные Intel, на свои процессоры на начало 2010 г. показаны на рис. 1.


Рисунок 1 - Цены на процессоры Intel

Среди причин успеха фирмы Intel на рынке микропроцессоров можно отметить следующие: производство наиболее производительных процессоров за счет внедрения наиболее передовых технологий; выпуск широкого диапазона процессоров по цене и мощности за счет поддержания моделей разных поколений от Core i7 до Celeron; удачная находка Intel Atom, позволившая наладить массовое производство бюджетных нетбуков; историческая причина - более ранний выход на рынок; технологическая причина - многие процессоры Intel имеют возможность «разгона», не используя фиксированную частоту системной шины и коэффициент умножения.

3.2 Процессоры AMD

Микропроцессоры AMD немного отстают в производительности от Intel Core i7, но составляют достойную конкуренцию менее мощным процессорам Intel. AMD выпускает широкий ассортимент процессоров:
-для настольных ПК: Phenom II, Phenom X3 и X4, Athlon II и X2, Sempron;
-для мобильного применения: Turion X2 и Sempron;
-для серверов - Opteron (в том числе шестиядерные).

Наиболее высокопроизводительными являются процессоры Phenom, они появились в 2007 году. В 2009 году появилось их второе поколение Phenom II. Выпускаются 2, 3, 4, и 6 ядерные процессоры (3-х ядерные - часть брака, 4-х ядерные с одним отключенным ядром). Конкурируют с Intel Core i7/i5/i9, показывают хорошие результаты в работе с мультимедийными приложениями за счет внедрения расширения 3DNow, разработанного AMD, и др. собственных высокопроизводительных технологий.

Процессоры Athlon представляют собой менее производительный и более дешевый вариант предыдущей серии без кэша 3-го уровня. Также производятся 2, 3, и 4-х ядерные модели.

Процессоры Sempron относятся к низкому классу процессоров по цене и производительности, предназначены для бюджетных компьютеров и ноутбуков. По методам разработки и способам продвижения на рынок аналогичны процессорам Celeron от Intel. Цены производителя на некоторые процессоры AMD, установленные в начале 2010 года показаны на рис. 2.



Рисунок 2 - Цены на процессоры AMD

К удачным технологическим и рыночным ходам компании AMD можно отнести: разработку и внедрение собственных технологий и наборов команд в противовес Intel; установку более низких цен на процессоры нижнего и среднего класса по сравнению с аналогичными моделями Intel; снижение объема брака при производстве 4-х ядерных процессоров за счет продажи части его как 2-х и 3-х ядерных.

3.3 Распределение и динамика мирового рынка

В 2010 году отмечен рост рынка микропроцессоров. Согласно данным исследования компанией IDC мирового рынка микропроцессоров для ПК, продажи во 2-м квартале 2010 г. относительно 1-го квартала (2010 г.) в штучном и денежном выражении выросли соответственно на 3.6% и 6.2%. По итогам второй четверти 2010 года доходы от реализации процессоров в мире увеличились по сравнению с аналогичным периодом годом ранее на 34 %.

Во втором квартале 2010 г. на долю Intel приходился 81% продаж, у AMD - 18,8%, VIA - 0,2 % (см. рис. 3).



Рисунок 3 - Распределение рынка микропроцессоров

Следует также отметить, что процессоры AMD все чаще применяются в ноутбуках и здесь доля AMD уже около 20%.

3.4 Ситуация на рынке в Украине

За прошедшую часть 2010 года объемы продаж процессоров в Украине также выросли. Здесь также наибольший спрос наблюдается на микропроцессоры Intel, на втором месте микропроцессоры от AMD. По результатам анализа интернет-магазинов выделены 10 наиболее популярных в Украине микропроцессоров. Цены (нижний и верхний пределы в грн.) на эти модели показаны на рис. 4 (объемы продаж падают слева направо).



Рисунок 4 - Цены на популярные процессоры в Украине (грн.)

Первое место заслуженно занял AMD Athlon II X2, обеспечивающий довольно высокую производительность при сравнительно небольшой цене; наиболее мощный из списка (и дорогой) Intel Core i5 расположился на 4-м месте, а самый мощный процессор Intel Core i7 даже не попал в список (11-е место) из-за слишком большой стоимости (больше 2500 грн.).

То, что в списке находится 5 моделей от AMD говорит о том, что для украинского покупателя довольно большое значение имеет цена (в среднем процессоры AMD немного дешевле их аналогов от Intel). В то же время большую популярность имеют и процессоры среднего и высокого класса, в список попали только две бюджетных модели – AMD Athlon II X2 и Intel Pentium Dual Core.

Выводы

По результатам работы можно сказать, что наибольшей мощностью обладают процессоры линейки Intel Core i7, именно его следует выбирать покупателю с наибольшими требованиями, ни один процессор от AMD пока что не может сравниться с ним в производительности (для большинства украинских покупателей этот процессор все еще слишком дорог). Ближайшим аналогом от AMD является четырехъядерный Phenom II X4, который можно приобрести в 1,5-2 раза дешевле. Это же процессор в среднем на 400 грн. дешевле чем четырехъядерный Intel Core 2 Quard, который при этом еще и уступает ему в производительности.

Для моделей среднего класса более выгодной будет уже покупка процессора от AMD. Сравнивая аналогичные по техническим характеристикам модели, например AMD Athlon II X2 и Intel Core 2 Duo видим, что первый вариант дешевле в 2 раза, AMD Phenom II X2 также дешевле своего аналога Intel Core i3 примерно на 200 грн.

Среди моделей низкобюджетного класса можно выделить Celeron для ПК и Atom для ноутбуков от Intel, и их соответствующие аналоги Sempron и Turion от AMD. Их ценовые и техничесие характеристики примерно равны.

В целом для пользователя доступен широкий диапазон моделей микропроцессоров любого уровня (при соответствующей покупательной способности) с немного большим предложением со стороны Intel.

Список источников

  1. Соломенчук В. Г. Железо ПК-2010. - Спб.: БХВ-Петербург - 2010.
  2. Описание продукции Intel. [Электронный ресурс]: http://www.intel.com/ru_ru/consumer/products
  3. Описание процессоров AMD. [Электронный ресурс]: http://www.amd.com/us/aboutamd/Pages/AboutAMD.aspx
  4. Новости IT: http://www.hardnsoft.ru
  5. Исследования фирмы IDC на рынке аппаратного обеспечения. [Электронный ресурс]:http://www.idc.com/research
  6. Электронная система поиска товаров от Yandex, каталог процессоров. [Электронный ресурс]:

Для того, чтобы выбрать хороший смартфон, важно опираться не только на внешний вид гаджета, но и на его «начинку». Мощный процессор является несомненным плюсом для устройства, однако не всегда покупатель при выборе смартфона может точно определить, насколько хорош процессор, установленный в нём. Часто подобное происходит из-за того, что люди попросту не знают, какие компании - производители процессоров являются топовыми. В данной статье мы попробуем подробно выяснить этот вопрос.

Одним из безусловных лидеров на современном рынке процессоров для смартфонов является компания Qualcomm. Основана она была в 1985 году в Сан-Диего, Калифорния, двумя профессорами Массачусетского Технологического Университета Ирвином Джейкобсом и Эндрю Витерби. Компания занималась исследованиями в области беспроводных средств связи, а так же разработками однокристальных схем (SoC). Qualcomm сотрудничала с такими корпорациями, как Ericsson, Kyocera и Atheros.

Спектр деятельности компании Qualcomm включал в себя производство мобильных процессоров и коммуникационных решений для смартфонов. Базируется линейка процессоров на архитектуре ARM и имеет широкий модельный ряд, разделённый на несколько классификаций: более ранние процессоры Qualcomm S1, S2, S3 и S4, и современные Qualcomm 200, 400, 600 и 800.

Самый мощный процессор на начало 2015-го является Snapdragon 810, впервые появившийся в смартфоне LG G FLEX2 . В нём 8-ми ядерный процессор Qualcomm Snapdragon 810 (MSM8994), с тактовой частотой до 2 ГГц.

Предыдущая версия Snapdragon 805 используется в смартфонах Samsung Galaxy S5 , Google Nexus 6, LG G3. Количество «баллов» при тестировании с помощью приложения Antutu Benchmark – 37780.

Компания Nvidia «родилась» в 1993 году в городе Санта – Клара, Калифорния, где и сейчас находится её штаб-квартира. Основателем компании является бизнесмен и специалист в области электронных технологий Хуан Жен Сюнь.

Название компании Nvidia известно практически каждому пользователю персонального компьютера, так как она является производителем популярной линейки видеокарт для ПК и ноутбуков Nvidia GeForce. Так же компания занимается разработкой процессоров для мобильный устройств (планшетов, смартфонов и т.д) на базе ARM, объединённых в общую линейку Tegra (Tegra 2,3, 4, K1 и т.д).

Последним поколением процессоров линейки Tegra является Nvidia Tegra K1. Его характеристики – частота 2,3 ГГц и четыре ядра. Этот процессор используют в устройствах Google Nexus , Lenovo и Acer. Баллы Antutu – 43851.

Южно-корейская компания Samsung была основана ещё в далёком 1938 году как компания, занимающаяся поставкой пищевого продовольствия. Однако к концу 60-х годов компания весьма крупно реформировалась и перешла на производство электроники, что до сих пор и является основной сферой её деятельности. Штаб-квартира находится в Сеуле.

Самсунг производит очень широкий спектр устройств: мобильные телефоны, смартфоны, планшеты, мониторы, двд-проигрыватели и т.д. Разумеется, являясь одним из самых крупных в мире производителей смартфонов, компания не могла обойти стороной и сферу производства процессоров для этих устройств.

Линейка процессоров Самсунг носит название Exynos. Базой является архитектура ARM. На конец 2014-го года самыми современными являются процессоры Samsung Exynos 5 Octa 5420 (1,9 ГГц, четыре ядра) и Samsung Exynos 5 Octa 5422 (2,1 ГГц, четыре ядра). Используются в ряду устройств Samsung Galaxy: S5, Note 3 и т.д. Так же компании Apple и Samsung договорились о сотрудничестве и в 2015 году смартфоны и планшеты Apple будут выходить с процессорами произведенными на заводе Samsung.
Баллы Antutu для Exynos 5 Octa 5420 – 34739.

MediaTek MT

Компания, основанная в 1997 году китайскими бизнесменами и специалистами по электронике Цзаем Мингаем и Чжо Чжинчже, базируется в Тайваньском парке высоких технологий в городе Синчжу (хотя имеет множество подразделений по всему миру) и занимается разработкой систем хранения данных, компонентов для мобильных телефонов, смартфонов и планшетов.

Наиболее широкую известность этой компании принесло производство процессоров для мобильных устройств в разных ценовых категориях. Mediatek называют главным конкурентом Qualcomm. Наиболее производительными процессорами для смартфонов на конец 2014-го являются MT6595 (2ГГц, 4 ядра), MT6735 (1,5 ГГц и 4 ядра) и MT6592M (8 ядер и 2 ГГц). Используются процессоры МТ многими компаниями-производителями смартфонов, от Sony до LG. Рейтинг в antutu для MT6592 – 30217.

Выбор смартфонов достаточно широк, так же, как и ряд характеристик. Покупателю нужно всего лишь выбрать подходящий! Внимательно подходите к выбору смартфона, и он будет служить вам верой и правдой достаточно долго.

Также вам понравятся:


Четыре великолепных компактных смартфона с мощными батареями
Какой хороший и недорогой смартфон? Обзор трех ультрабюджетных моделей
Сравнение характеристик: Samsung Galaxy Note 8 vs Galaxy S8+ vs LG G6 vs iPhone 7 Plus

09.07.2018, Пн, 13:52, Мск , Текст: Дмитрий Степанов

Китайская компания Hygon начала производство x86-совместимых серверных процессоров Dhyana на базе архитектуры AMD Zen, за лицензирование технологии производства которых заплатила $293 миллиона. Развертывание производства собственных чипов призвано составить конкуренцию решениям триумвирата Intel, VIA и AMD на внутреннем рынке Китая, а также помочь в повышении уровня независимости от импорта, что особенно важно в условиях разгоревшейся торговой войны с США.

Новый процессор для внутреннего рынка

Hygon, китайский производитель полупроводниковых изделий, начал серийное производство серверных x86-совместимых процессоров на микроархитектуре AMD Zen под брендом Dhyana. Таким образом, Hygon стал четвертым в мире игроком на рынке x86-микросхем, в перспективе способным составить конкуренцию Intel, VIA и AMD. Микросхемы разработаны компанией Chendgdu Haiguang IC Design Co., совместным предприятием Hygon и AMD.

О создании совместной компании было объявлено в мае 2018 г. По оценке Forbes, стоимость сделки по приобретению прав на использование технологий AMD составила $293 млн. Также в соответствии с условиями сделки AMD будет получать регулярные денежные отчисления, так называемые роялти, по истечении срока действия лицензии на использование интеллектуальной собственности компании. Кроме того, соглашение не запрещает AMD продвигать собственные x86-совместимые процессоры на территории Китая.

Как утверждает AMD, компания не предоставляет китайским партнерам окончательного дизайна микросхем. Вместо этого она позволяет им использовать собственные наработки для проектирования чипов, нацеленных исключительно на внутренний китайский рынок. Тем не менее, новые процессоры, судя по всему, обладают минимальными отличиями от линейки серверных микросхем AMD Epyc первого поколения – для обеспечения поддержки Dhyana ядром Linux разработчикам пришлось добавить лишь новые идентификаторы вендоров и номера серий. Размер патча для Linux, отправленного Hygon, не превышает 200 строк.

x86-процессор Dhyana практически ничем не отличается от оригинального AMD Epyc

Также стоит отметить, что новые микросхемы, в отличие от оригинальных AMD Epyc, поставляющихся в виде отдельной микросхемы для установки в разъем на материнской плате, принадлежат к классу SoC-решений (System on Chip – система на кристалле), то есть распаиваются непосредственно на материнской плате.

Китай продолжает инвестировать в x86-совместимые чипы

Информация о новых чипах возникла на фоне набирающей в последнее время обороты торговой войны между США и Китаем. Подобное развитие событий, вероятно, способствует укреплению в головах руководителей КНР давней уверенности в том, что налаживание собственного производства x86-совместимых микропроцессоров является стратегически важной задачей для государства.

Напомним, что в 2015 г. администрация Барака Обамы (Barack Obama), действующего на тот момент президента США, запретила экспорт серверных процессоров Intel Xeon из-за опасений по поводу того, что поставка чипов может существенно упростить реализацию китайской ядерной программы.

В данной ситуации достижение договоренностей с AMD пришлось как нельзя кстати. Сделка, по-видимому, выгодна и безопасна для обеих сторон. Сложная структура совместной компании позволяет AMD лицензировать собственные технологии, не нарушая законов и запретов, при этом гарантируя себе прибыль как в краткосрочной, так и в среднесрочной перспективе, без осуществления каких-либо существенных капиталовложений. Китайская же сторона получает возможность усилить собственную независимость от импорта и дать бой конкурентам в лице Intel и VIA, занимающим доминирующее положение на рынке x86-микросхем.

Hygon не единственный китайский производитель микроэлектроники, инвестирующий в импортозамещение в области x86-совместимых микросхем. Например, компания Zhaoxin Semiconductor в партнерстве с VIA также занимается производством продукции данного вида.

В начале 2018 г. Zhaoxin Semiconductor анонсировала линейку новых x86-совместимых микропроцессоров Kaixian KX-5000 на архитектуре WuDaoKou, выполненных в соответствии с 28-нанометровым технологическим процессом. Производительность восьмиядерной новинки позволила продемонстрировать достойный результат на уровне Intel Atom C2750 в синтетических тестах.

Корни нашего цифрового образа жизни определённо растут из полупроводников, которые позволили создавать сложные вычислительные чипы на основе транзисторов. Они хранят и обрабатывают данные, что и является основой современных микропроцессоров. Полупроводники, которые сегодня изготавливаются из песка, являются ключевым компонентом практически любого электронного устройства, от компьютеров до ноутбуков и сотовых телефонов. Даже машины теперь не обходятся без полупроводников и электроники, поскольку полупроводники управляют системой кондиционирования воздуха, процессом впрыска топлива, зажиганием, люком, зеркалами и даже рулевым управлением (BMW Active Steering). Сегодня почти любое устройство, которое потребляет энергию, построено на полупроводниках.

Микропроцессоры, без сомнения, находятся среди самых сложных полупроводниковых продуктов, поскольку в скором времени число транзисторов достигнет миллиарда, а спектр функциональности поражает уже сегодня. Скоро выйдут двуядерные процессоры Core 2 на почти готовом 45-нм техпроцессе Intel, причём содержать они будут уже 410 миллионов транзисторов (хотя их большая часть будет использоваться для 6-Мбайт кэша L2). 45-нм процесс назван так по размеру одного транзистора, который теперь примерно в 1 000 раз меньше диаметра человеческого волоса. В определённой степени именно поэтому электроника начинает управлять всем в нашей жизни: даже когда размеры транзистора были больше, производить не очень сложные микросхемы было очень дёшево, бюджет транзисторов был весьма большим.

В нашей статье мы рассмотрим основы производства микропроцессоров, но также коснёмся и истории процессоров, архитектуры и рассмотрим разные продукты на рынке. В Интернете можно найти немало интересной информации, кое-что перечислено ниже.

  • Wikipedia: Microprocessor . В этой статье рассмотрены разные типы процессоров и приведены ссылки на производителей и дополнительные страницы Wiki, посвящённые процессорам.
  • Wikipedia: Microprocessors (Category) . В разделе, посвящённом микропроцессорам, приведено ещё больше ссылок и информации.

Конкуренты в сфере ПК: AMD и Intel

Штаб-квартира компании Advanced Micro Devices Inc., основанной в 1969, располагается в калифорнийском Саннивейле, а "сердце" компании Intel, которая была образована всего на год раньше, располагается в нескольких километрах, в городе Санта-Клара. У AMD сегодня есть два завода: в Остине (Техас, США) и в Дрездене (Германия). Скоро в действие вступит новый завод. Кроме того, AMD объединила усилия с IBM по разработке процессорных технологий и по производству. Конечно, всё это - лишь доля от размера Intel, поскольку у этого лидера рынка сегодня работают почти 20 заводов в девяти местах. Примерно половина из них используется для производства микропроцессоров. Поэтому, когда вы сравниваете AMD и Intel, помните, что вы сравниваете Давида и Голиафа.

У Intel есть бесспорное преимущество в виде огромных производственных мощностей. Да, компания сегодня лидирует по внедрению передовых технологических процессов. Intel примерно на год опережает AMD в этом отношении. В результате Intel может использовать в своих процессорах большее число транзисторов и больший объём кэша. AMD, в отличие от Intel, приходится максимально эффективно оптимизировать техпроцесс, чтобы не отстать от конкурента и выпускать достойные процессоры. Конечно, дизайн процессоров и их архитектура сильно различаются, но технический процесс производства построен на тех же базовых принципах. Хотя, конечно, и в нём отличий много.

Производство микропроцессоров

Производство микропроцессоров состоит из двух важных этапов. Первый заключается в производстве подложки, что AMD и Intel осуществляют на своих заводах. Сюда входит и придание подложке проводящих свойств. Второй этап - тест подложек, сборка и упаковка процессора. Последнюю операцию обычно производят в менее дорогих странах. Если вы посмотрите на процессоры Intel, то найдёте надпись, что упаковка была осуществлена в Коста-Рике, Малайзии, на Филиппинах и т.д.

AMD и Intel сегодня пытаются выпускать продукты для максимального числа сегментов рынка, причём, на основе минимально возможного ассортимента кристаллов. Прекрасный пример - линейка процессоров Intel Core 2 Duo. Здесь есть три процессора с кодовыми названиями для разных рынков: Merom для мобильных приложений, Conroe - настольная версия, Woodcrest - серверная версия. Все три процессора построены на одной технологической основе, что позволяет производителю принимать решения на последних этапах производства. Можно включать или отключать функции, а текущий уровень тактовых частот даёт Intel прекрасный процент выхода годных кристаллов. Если на рынке повысился спрос на мобильные процессоры, Intel может сфокусироваться на выпуске моделей Socket 479. Если возрос спрос на настольные модели, то компания будет тестировать, валидировать и упаковывать кристаллы для Socket 775, в то время как серверные процессоры упаковываются под Socket 771. Так создаются даже четырёхядерные процессоры: два двуядерных кристалла устанавливаются в одну упаковку, вот мы и получаем четыре ядра.

Как создаются чипы

Производство чипов заключается в наложении тонких слоёв со сложным "узором" на кремниевые подложки. Сначала создаётся изолирующий слой, который работает как электрический затвор. Сверху затем накладывается фоторезистивный материал, а нежелательные участки удаляются с помощью масок и высокоинтенсивного облучения. Когда облучённые участки будут удалены, под ними откроются участки диоксида кремния, который удаляется с помощью травления. После этого удаляется и фоторезистивный материал, и мы получаем определённую структуру на поверхности кремния. Затем проводятся дополнительные процессы фотолитографии, с разными материалами, пока не будет получена желаемая трёхмерная структура. Каждый слой можно легировать определённым веществом или ионами, меняя электрические свойства. В каждом слое создаются окна, чтобы затем подводить металлические соединения.

Что касается производства подложек, то из цельного монокристалла-цилиндра их необходимо нарезать тонкими "блинами", чтобы потом легко разрезать на отдельные кристаллы процессоров. На каждом шаге производства выполняется сложное тестирование, позволяющее оценить качество. Для тестов каждого кристалла на подложке используются электрические зонды. Наконец, подложка разрезается на отдельные ядра, нерабочие ядра сразу же отсеиваются. В зависимости от характеристик, ядро становится тем или иным процессором и заключается в упаковку, которая облегчает установку процессора на материнскую плату. Все функциональные блоки проходят через интенсивные стресс-тесты.

Всё начинается с подложек

Первый шаг в производстве процессоров выполняется в чистой комнате. Кстати, важно отметить, что подобное технологичное производство представляет собой скопление огромного капитала на квадратный метр. На постройку современного завода со всем оборудованием легко "улетают" 2-3 млрд. долларов, да и на тестовые прогоны новых технологий требуется несколько месяцев. Только затем завод может серийно выпускать процессоры.

В общем, процесс производства чипов состоит из нескольких шагов обработки подложек. Сюда входит и создание самих подложек, которые в итоге будут разрезаны на отдельные кристаллы.

Всё начинается с выращивания монокристалла, для чего затравочный кристалл внедряется в ванну с расплавленным кремнием, который находится чуть выше точки плавления поликристаллического кремния. Важно, чтобы кристаллы росли медленно (примерно день), чтобы гарантировать правильное расположение атомов. Поликристаллический или аморфный кремний состоит из множества разномастных кристаллов, которые приведут к появлению нежелательных поверхностных структур с плохими электрическими свойствами. Когда кремний будет расплавлен, его можно легировать с помощью других веществ, меняющих его электрические свойства. Весь процесс происходит в герметичном помещении со специальным воздушным составом, чтобы кремний не окислялся.

Монокристалл разрезается на "блины" с помощью кольцевой алмазной пилы, которая очень точная и не создаёт крупных неровностей на поверхности подложек. Конечно, при этом поверхность подложек всё равно не идеально плоская, поэтому нужны дополнительные операции.

Сначала с помощью вращающихся стальных пластин и абразивного материала (такого, как оксид алюминия), снимается толстый слой с подложек (процесс называется притиркой). В результате устраняются неровности размером от 0,05 мм до, примерно, 0,002 мм (2 000 нм). Затем следует закруглить края каждой подложки, поскольку при острых кромках могут отслаиваться слои. Далее используется процесс травления, когда с помощью разных химикатов (плавиковая кислота, уксусная кислота, азотная кислота) поверхность сглаживается ещё примерно на 50 мкм. Физически поверхность не ухудшается, поскольку весь процесс полностью химический. Он позволяет удалить оставшиеся погрешности в структуре кристалла, в результате чего поверхность будет близка к идеалу.

Последний шаг - полировка, которая сглаживает поверхность до неровностей, максимум, 3 нм. Полировка осуществляется с помощью смеси гидроксида натрия и гранулированного диоксида кремния.

Сегодня подложки для микропроцессоров имеют диаметр 200 или 300 мм, что позволяет производителям чипов получать с каждой из них множество процессоров. Следующим шагом будут 450-мм подложки, но раньше 2013 года ожидать их не следует. В целом, чем больше диаметр подложки, тем больше можно произвести чипов одинакового размера. 300-мм подложка, например, даёт более чем в два раза больше процессоров, чем 200-мм.

Мы уже упоминали легирование, которое выполняется во время роста монокристалла. Но легирование производится и с готовой подложкой, и во время процессов фотолитографии позднее. Это позволяет менять электрические свойства определённых областей и слоёв, а не всей структуры кристалла

Добавление легирующего вещества может происходить через диффузию. Атомы легирующего вещества заполняют свободное пространство внутри кристаллической решётки, между структурами кремния. В некоторых случаях можно легировать и существующую структуру. Диффузия осуществляется с помощью газов (азот и аргон) или с помощью твёрдых веществ или других источников легирующего вещества.

Ещё один подход к легированию заключается в ионной имплантации, которая очень полезна в деле изменения свойств подложки, которая была легирована, поскольку ионная имплантация осуществляется при обычной температуре. Поэтому существующие примеси не диффундируют. На подложку можно наложить маску, которая позволяет обрабатывать только определённые области. Конечно, об ионной имплантации можно говорить долго и обсуждать глубину проникновения, активацию добавки при высокой температуре, канальные эффекты, проникновение в оксидные уровни и т.д., но это выходит за рамки нашей статьи. Процедуру можно повторять несколько раз во время производства.

Чтобы создать участки интегральной схемы, используется процесс фотолитографии. Поскольку при этом нужно облучать не всю поверхность подложки, то важно использовать так называемые маски, которые пропускают излучение высокой интенсивности только на определённые участки. Маски можно сравнить с чёрно-белым негативом. Интегральные схемы имеют множество слоёв (20 и больше), и для каждого из них требуется своя маска.

Структура из тонкой хромовой плёнки наносится на поверхность пластины из кварцевого стекла, чтобы создать шаблон. При этом дорогие инструменты, использующие поток электронов или лазер, прописывают необходимые данные интегральной схемы, в результате чего мы получаем шаблон из хрома на поверхности кварцевой подложки. Важно понимать, что каждая модификация интегральной схемы приводит к необходимости производства новых масок, поэтому весь процесс внесения правок очень затратный. Для очень сложных схем маски создаются весьма долго.

С помощью фотолитографии на кремниевой подложке формируется структура. Процесс повторяется несколько раз, пока не будет создано множество слоёв (более 20). Слои могут состоять из разных материалов, причём, нужно ещё и продумывать соединения микроскопическими проволочками. Все слои можно легировать.

Перед тем, как начнётся процесс фотолитографии, подложка очищается и нагревается, чтобы удалить липкие частицы и воду. Затем подложка с помощью специального устройства покрывается диоксидом кремния. Далее на подложку наносится связывающий агент, который гарантирует, что фоторезистивный материал, который будет нанесён на следующем шаге, останется на подложке. Фоторезистивный материал наносится на середину подложки, которая потом начинает вращаться с большой скоростью, чтобы слой равномерно распределился по всей поверхности подложки. Подложка вновь затем нагревается.

Затем через маску обложка облучается квантовым лазером, жёстким ультрафиолетовым излучением, рентгеновским излучением, пучками электронов или ионов - могут использоваться все эти источники света или энергии. Пучки электронов применяются, главным образом, для создания масок, рентгеновские лучи и пучки ионов - для исследовательских целей, а в промышленном производстве сегодня доминируют жёсткое УФ-излучение и газовые лазеры.


Жёсткое УФ-излучение с длиной волны 13,5 нм облучает фоторезистивный материал, проходя через маску.

Для получения требуемого результата очень важны время проецирования и фокусировка. Плохая фокусировка приведёт к тому, что останутся лишние частицы фоторезистивного материала, поскольку некоторые отверстия в маске не будут облучены должным образом. То же самое получится, если время проецирования будет слишком маленьким. Тогда структура из фоторезистивного материала будет слишком широкой, участки под отверстиями будут недодержанными. С другой стороны, чрезмерное время проецирования создаёт слишком большие участки под отверстиями и слишком узкую структуру из фоторезистивного материала. Как правило, очень трудоёмко и сложно отрегулировать и оптимизировать процесс. Неудачная регулировка приведёт к серьёзным отклонениям и в соединительных проводниках.

Специальная шаговая проекционная установка перемещает подложку в нужное положение. Затем может проецироваться строчка или один участок, чаще всего соответствующий одному кристаллу процессора. Дополнительные микроустановки могут вносить дополнительные изменения. Они могут отлаживать существующую технологию и оптимизировать техпроцесс. Микроустановки обычно работают над площадями меньше 1 кв. мм, в то время как обычные установки покрывают площади большего размера.

Затем подложка переходит на новый этап, где удаляется ослабленный фоторезистивный материал, что позволяет получить доступ к диоксиду кремния. Существуют мокрый и сухой процессы травления, которыми обрабатываются участки диоксида кремния. Мокрые процессы используют химические соединения, а сухие процессы - газ. Отдельный процесс заключается и в удалении остатков фоторезистивного материала. Производители часто сочетают мокрое и сухое удаление, чтобы фоторезистивный материал был полностью удалён. Это важно, поскольку фоторезистивный материал органический, и если его не удалить, он может привести к появлению дефектов на подложке. После травления и очистки можно приступать к осмотру подложки, что обычно и происходит на каждом важном этапе, или переводить подложку на новый цикл фотолитографии.

Тест подложек, сборка, упаковка

Готовые подложки тестируются на так называемых установках зондового контроля. Они работают со всей подложкой. На контакты каждого кристалла накладываются контакты зонда, что позволяет проводить электрические тесты. С помощью программного обеспечения тестируются все функции каждого ядра.

С помощью разрезания из подложки можно получить отдельные ядра. На данный момент установки зондового контроля уже выявили, какие кристаллы содержат ошибки, поэтому после разрезания их можно отделить от годных. Раньше повреждённые кристаллы физически маркировались, теперь в этом нет необходимости, вся информация хранится в единой базе данных.

Крепление кристалла

Затем функциональное ядро нужно связать с процессорной упаковкой, используя клейкий материал.

Затем нужно провести проводные соединения, связывающие контакты или ножки упаковки и сам кристалл. Могут использоваться золотые, алюминиевые или медные соединения.


Большинство современных процессоров используют пластиковую упаковку с распределителем тепла.

Обычно ядро заключается в керамическую или пластиковую упаковку, что позволяет предотвратить повреждение. Современные процессоры оснащаются так называемым распределителем тепла, который обеспечивает дополнительную защиту кристалла, а также большую контактную поверхность с кулером.

Тестирование процессора

Последний этап подразумевает тестирование процессора, что происходит при повышенных температурах, в соответствии со спецификациями процессора. Процессор автоматически устанавливается в тестовый сокет, после чего происходит анализ всех необходимых функций.

Ни для кого не секрет, что производственные фабрики компании Intel на данный момент являются одними из ведущих фабрик в мире по уровню технической оснащенности. Чем они отличаются от суровых Челябинских труболитейных заводов? А давайте посмотрим.

3 x Easter eggs

Эта статья может быть в первую очередь полезна тем, кто хочет построить свою фабрику для производства процессоров – если подобная мысль у вас хоть раз возникала, то смело заносите статью в закладки;) Для того, чтобы понять, о каких масштабах идет речь, я советую ознакомиться с предыдущей статьей под названием «Трудности производства процессоров ». Важны понимать масштабы не столько самой фабрики (хотя и их тоже), сколько самого производства – некоторые «детальки» современных процессоров делаются буквально на атомарном уровне. Соответственно и подход здесь особый.

Понятное дело, что без заводов в производстве не обойтись. На данный момент у компании Intel есть 4 завода, способных массово производить процессоры по технологии 32нм: D1D и D1C в штате Орегон, Fab 32 в штате Аризона и Fab 11X в Нью-Мексико.

Устройство завода

Высота каждой фабрики Intel по производству процессоров на 300-мм кремниевых пластинах составляет 21 метр, а площадь достигает 100 тысяч квадратных метров. В здании завода можно выделить 4 основных уровня:

Уровень системы вентиляции
Микропроцессор состоит из миллионов транзисторов – самая маленькая пылинка, оказавшаяся на кремниевой пластине, способна уничтожить тысячи транзисторов. Поэтому важнейшим условием производства микропроцессоров является стерильная чистота помещений. Уровень системы вентиляции расположен на верхнем этаже - здесь находятся специальные системы, которые осуществляют 100% очистку воздуха, контролируют температуру и влажность в производственных помещениях. Так называемые «Чистые комнаты» делятся на классы (в зависимости от количества пылинок на единицу объема) и самая-самая (класс 1) примерно в 1000 раз чище хирургической операционной. Для устранения вибраций чистые комнаты располагаются на собственном виброзащитном фундаменте.

Уровень «чистых комнат»
Этаж занимает площадь нескольких футбольных полей – именно здесь изготавливают микропроцессоры. Специальная автоматизированная система осуществляет перемещение пластин от одной производственной станции к другой. Очищенный воздух подается через систему вентиляции, расположенную в потолке, и удаляется через специальные отверстия, расположенные в полу.
Помимо повышенных требований к стерильности помещений, «чистым» должен быть и работающий там персонал - только на этом уровне специалисты работают в стерильных костюмах, которые защищают (благодаря встроенной системе фильтрации, работающей от батареи) кремниевые пластины от микрочастиц текстильной пыли, волос и частиц кожи. Такой костюм называется «Bunny suit» - чтобы надеть его в первый раз, может потребоваться от 30 до 40 минут. Специалистам компании для этого требуется порядка 5 минут.

Нижний уровень
Предназначен для систем поддерживающих работу фабрики (насосы, трансформаторы, силовые шкафы и т.п.). Большие трубы (каналы) передают различные технические газы, жидкости и отработанный воздух. Спецодежда сотрудников данного уровня включает каску, защитные очки, перчатки и специальную обувь.

Инженерный уровень
По назначению является продолжением нижнего уровня. Здесь находятся электрические щиты для энергоснабжения производства, система трубопроводов и воздуховодов, а так же кондиционеры и компрессоры.

Пыль - мелкие твёрдые тела органического или минерального происхождения. Пыль - это частички среднего диаметра 0,005 мм и максимального - 0,1 мм. Более крупные частицы переводят материал в разряд песка, который имеет размеры от 0,1 до 1 мм. Под действием влаги пыль обычно превращается в грязь.

Интересные факты
В плотно запертой с закрытыми окнами квартире за две недели оседает порядка 12 тысяч пылевых частиц на 1 квадратный сантиметр пола и горизонтальной поверхности мебели. В этой пыли содержится 35 % минеральных частиц, 12 % текстильных и бумажных волокон, 19 % чешуек кожи, 7 % цветочной пыльцы, 3 % частиц сажи и дыма. Оставшиеся 24 % неустановленного происхождения.
Подсчитано, что один гектар газона связывает 60 тонн пыли.

Для постройки фабрики такого уровня требуется около 3 лет и порядка $5млрд – именно эту сумму должен будет «отбить» завод в последующие 4 года (к тому времени как появятся новые технологический процесс и архитектура; необходимая для этого производительность – порядка 100 рабочих кремниевых пластин в час). Если после этих цифр ни одна мышца на вашем лице не дрогнула, то вот вам (уже для внесения в смету) еще немного приблизительной статистики. Для постройки завода требуется:
- более 19 000 тонн стали
- более 112 000 кубических метров бетона
- более 900 километров кабеля

Наглядный процесс строительства одной из фабрик компании (заливал в HD):

Intel Copy Exactly

У большинства производителей полупроводниковой электроники оборудование и процессы, используемые в лабораториях для исследований и разработок, отличаются от того, что применяется на заводах по производству самой продукции. В связи с этим возникает проблема – при переходе с опытного производства на серийное, часто возникают непредвиденные ситуации и прочие задержки, возникающие из-за необходимости дорабатывать и адаптировать технологические процессы – в общем, делать всё для достижения наивысшего процента выхода годной продукции. Помимо задержки серийного производства это может привести и к другим осложнениям – да хотя бы к изменениям в значениях параметров техпроцесса. Соответственно, результат может получиться непредсказуемым.
У компании Intel в такой ситуации свой подход, который называется Copy Exactly . Суть данной технологии – в полном копировании лабораторных условий на строящиеся фабрики. Повторяется все до мелочей - не только само здание (конструкция, оборудование и настройки, трубопроводная система, чистые комнаты и покраска стен), но и входные/выходные параметры процессов (которых более 500!), поставщики исходных материалов и даже методики обучения персонала. Все это позволяет работать фабрикам в полную силу практически сразу после запуска, но и это не главный плюс. Благодаря такому подходу фабрики имеют большую гибкость – в случае аварии или реорганизации, начатые на одном заводе пластины смогут быть сразу «продолжены» на другом, без особого ущерба для бизнеса. Подобный подход по достоинству оценили конкурирующие компании, но почему-то практически никто его больше не применяет.

Как я уже говорил, в зале вычислительной техники Московского Политехнического музея компания Intel открыла свою экспозицию, одну из самых крупных в зале. Стенд получил название «От песка до процессора » и представляет собой достаточно познавательную конструкцию.

Во главе зала стоит «Chipman» в точной копии костюма, которые применяются на заводах корпорации. Рядом – макет одной из фабрик; неподалеку стоит стенд, внутри которого находятся «процессоры на разных этапах» - куски оксида кремния, кремниевые пластины, сами процессоры и т.д. Все это снабжено большим количество информации и подкреплено интерактивным стендом, на котором любой желающий может рассмотреть устройство процессора (передвигая ползунок масштаба – вплоть до молекулярного строения). Чтобы не быть голословным, вот пара фотографий экспозиции:

В понедельник будет статья про само производство процессоров. А пока снова откиньтесь на спинку стула и посмотрите (желательно в HD) этот видеоролик:



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта