Главная » Дом и быт » Что такое видеопамять? Компьютер. Большой самоучитель по ремонту, сборке и модернизации Как добавить видеопамять из оперативной

Что такое видеопамять? Компьютер. Большой самоучитель по ремонту, сборке и модернизации Как добавить видеопамять из оперативной

РЕФЕРАТ

по дисциплинеЭВМ и периферийные устройства

на тему:

«Видеокарта. Устройство, функции»

(ФИО полностью)

Москва 2015

Что такое видеокарта? ….………………………………………………………...4

Для чего используется видеопамять? ……………………………………………..6

История видеокарт ………………………………………………………………… 7

IBM Monochrome Display Adapter …………………...…………………………… 8

Первый IBM PC…………………………………………………………………..… 8

Видеокарта IBM CGA……………………………………………………………… 9

Видеокарта EGA …………………………………………………………………. 10

Видеокарта IBM VGA ………………………………………………………… 12

Видеокарта S3 Virge ……………………………………………………………... 14

Видеокарта Voodoo Graphics…………………………………….……...……….. 16

Видеокарта Diamond Monster ………………………………………………..….. 16

Видеокарта Voodoo2 с первым в мире SLI……………………………….…….. 18

Видеокарта RIVA TNT от NVIDIA ………………………………...………….. 19

Видеокарта 3D Rage Pro ………………..………………………....………..……. 20

Видеокарта Voodoo 3 от 3Dfx………………………………………….………… 21

Видеокарта Matrox Millenium G40…………………………………..…..………. 22

Видеокарта Rage 128 …………………………………………………………….23

Видеокарта ATI Rage Fury MAXX ……………………………………………….24

Видеокарта Voodoo5……………………………………………………………….25

Видеокарта GeForce 256………………………………………………………… 25

Видеокарта BitBoys Axe………………………………………………………… 28

Видеокарта Glaze3D……………………………………………………………… 28

Видеокарта NVIDIA GeForce2…………………………………………………….29

Видеокарта GeForce3 с чипом NV20…………………………………………… 29

Видеокарта ATI R200……………………………………………………………...30

Шейдер……………………………………………………………………………...31

Выводы……………………………………………………………………………..33

Список использованной литературы …………………………………………….34

Что такое видеокарта?

Видеока́рта (известна также как графи́ческая пла́та, графи́ческая ка́рта, видеоада́птер, графический ада́птер) - устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение и в первую очередь под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа.

Видеопамять-один из компонентов компьютера, от которого требуется наибольшая производительность, это графический контроллер, являющийся сердцем всех мультимедиа систем.

Пропускная способность обычно измеряется в мегабайтах в секунду и показывает скорость, с которой происходит обмен данными между видеопамятью и графическим контроллером. На производительность графической подсистемы влияют несколько факторов: скорость центрального процессора,(CPU)скорость интерфейсной шины,(PCI или AGP)скорость видеопамяти, скорость графического контроллера

Современная видеокарта состоит из следующих частей :

Графический процессор(Graphics processing unit - графическое процессорное устройство) - занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства.

Видеоконтроллер - отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти.

Видеопамять - выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5.

Цифро-аналоговый преобразователь(ЦАП, RAMDAC - Random Access Memory Digital-to-Analog Converter) - служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока: три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий - RGB), и SRAM для хранения данных о гамма-коррекции

Видео-ПЗУ(Video ROM) - постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую - к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.

Система охлаждения - предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.

Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера - специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.

Ширина шины памяти, измеряется в битах - количество бит информации, передаваемой за такт. Важный параметр в производительности карты.

Объём видеопамяти, измеряется в мегабайтах - объём собственной оперативной памяти видеокарты. Больший объём далеко не всегда означает большую производительность.

Частоты ядра и памяти - измеряются в мегагерцах, чем больше, тем быстрее видеокарта будет обрабатывать информацию.

Текстурная и пиксельная скорость заполнения, измеряется в млн. пикселов в секунду, показывает количество выводимой информации в единицу времени.

выводы карты - видеоадаптеры MDA, Hercules, CGA и EGA оснащались 9-контактным разъёмом типа D-Sub. Изредка также присутствовал коаксиальный разъём Composite Video, позволяющий вывести черно-белое изображение на телевизионный приемник или монитор, оснащенный НЧ-видеовходом.

Для чего используется видеопамять?

Для чего нужны видеокарты и принципы их работы, знает множество продвинутых пользователей компьютера. Ну а историю их развития и усовершенствования от самого их появления до сегодняшнего дня мало кто знает.

Графические адаптеры, быть может, самые интересные и значимые составляющие современного ПК. Для огромного числа геймеров, видеокарты стоят на первом месте среди компонентов компьютера по значимости. Ради увеличения такого драгоценного количества кадров в игре они готовы выложить немалую сумму за лучшие видеокарты. А для разработчиков видеокарт эти денежные средства – толчок для создания более мощных и современных адаптеров. Развитие видеокарт существенно обгоняет развитие, например, процессоров. Хотя несколько десятков лет в это было трудно поверить.

Скорость, с которой информация поступает на экран, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:

· разрешение вашего монитора

· количество цветов, из которых можно выбирать при создании изображения

· частота, с которой происходит обновление экрана

Разрешение определяется количеством пикселов на линии и количеством самих линий. Поэтому на дисплее с разрешением 1024х768, типичном для систем, использующих ОС Windows, изображение формируется каждый раз при обновлении экрана из 786,432 пикселов информации.

Обычно частота обновления экрана имеет значение не менее 75Hz, или циклов в секунду. Следствием мерцания экрана является зрительное напряжение и усталость глаз при длительном наблюдении за изображением. Для уменьшения усталости глаз и улучшения эргономичности изображения значение частоты обновления экрана должно быть достаточно высоким, не менее 75 Hz.

Число допускающих воспроизведение цветов, или глубина цвета - это десятичный эквивалент двоичного значения количества битов на пиксел. Так, 8 бит на пиксел эквивалентно 28 или 256 цветам, 16-битный цвет, часто называемый просто high-color, отображает более 65,000 цветов, а 24-битный цвет, также известный, как истинный или true color, может представить 16.7 миллионов цветов. 32-битный цвет с целью избежания путаницы обычно означает отображение истинного цвета с дополнительными 8 битами, которые используются для обеспечения 256 степеней прозрачности. Так, в 32-битном представлении каждый из 16.7 миллионов истинных цветов имеет дополнительные 256 степеней доступной прозрачности. Такие возможности представления цвета имеются только в системах высшего класса и графических рабочих станциях.

Ранее настольные компьютеры были оснащены в основном мониторами с диагональю экрана 14 дюймов. VGA разрешение 640х480 пикселов вполне и хорошо покрывало этот размер экрана. Как только размер среднего монитора увеличился до 15 дюймов, разрешение увеличилось до значения 800х600 пикселов. Так как компьютер все больше становится средством визуализации с постоянно улучшающейся графикой, а графический интерфейс пользователя (GUI) становится стандартом, пользователи хотят видеть больше информации на своих мониторах. Мониторы с диагональю 17 дюймов становятся стандартным оборудованием для систем на базе ОС Windows, и разрешение 1024х768 пикселов адекватно заполняет экран с таким размером. Некоторые пользователи используют разрешение 1280х1024 пикселов на 17 дюймовых мониторах.

Современной графической подсистеме для обеспечения разрешения 1024x768 требуется 1 Мегабайт памяти. Несмотря на то, что только три четверти этого объема памяти необходимо в действительности, графическая подсистема обычно хранит информацию о курсоре и ярлыках в буферной памяти дисплея (off-screen memory) для быстрого доступа. Пропускная способность памяти определяется соотношением того, как много мегабайт данных передаются в память и из нее за секунду времени. Типичное разрешение 1024х768, при 8-битной глубине представления цвета и частоте обновления экрана 75 Hz, требует пропускной способности памяти 1118 мегабайт в секунду. Добавление функций обработки 3D графики требует увеличения размера доступной памяти на борту видеоадаптера. В современных видеоакселераторах для систем на базе Windows типичен размер установленной памяти в 4 Мб. Дополнительная память сверх необходимой для создания изображения на экране используется для z-буфера и хранения текстур.

История видеокарт

Начало истории PC-совместимых персональных компьютеров положил адаптер MDA (Monochrome Display Adapter), появившийся во всем известном IBM в 1981 году и ставший родоначальником графических карт. Этот адаптер был первым неинтегрированным в материнскую плату. Он был собран на отдельной плате, и для него был создан специальной слот в универсальной шине XT-bus.

MDA - дальний предок современных видеокарт - IBM Monochrome Display Adapter

В принципе, он был видеоконтроллером, функция которого заключалась в выводе содержимого видеопамяти на монитор. Сигнал, который генерировал MDA, был цифровым, что явилось причиной отсутствия обязательного для последующих адаптеров RAMDAC. Плата MDA включала в себя не только чип видеоконтроллера, но и 4 кб видеопамяти, тактовый генератор и микросхему ПЗУ, в которой содержался шрифт.

Забавно, но адаптер MDA не работал в графическом режиме – он был просто текстовым. Однако, многие ПК в то время работали с графикой. Почему же IBM отказалось от графики? Заключалось все в позиции IBM. То, что компьютер умел «рисовать» на мониторе, тогда считалось чем-то несерьезным, связывалось с играми. И, конечно же, компьютеру для бизнеса не нужны были эти «игрушки».

Первый IBM PC

Но, несмотря на отсутствие графики, MDA умел достаточно. Он выводил на монитор 25 строк, содержащих 80 символов каждая, и отдельный символ располагался на матрице 9*14 пикселей. Таким образом, разрешение, выдаваемое MDA, было 720*350 пикселей, что придавало тексту большую четкость, которую конкуренты не предлагали. Помимо этого, у символов было 5 атрибутов на выбор: обычный, яркий, подчеркнутый, инверсный и даже мигающий. Очевидно, что работал MDA только с черно-белыми мониторами. А также у MDA был порт для принтера, что означало, что покупатели не надо было покупать дополнительный контроллер, который стоил в то время около $100.

И все же не будь у IBM PC графики – он не был бы таким популярным. Ради «несерьезных» пользователей для IBM PC в тот же год был изготовлен еще один адаптер, который назывался CGA (Color Graphics Adapter). Он был выпущен тоже в 1981 году. Он выдавал меньшее разрешение, чем у MDA, зато у него было гораздо больше режимов. Благодаря 16 кб видеопамяти, CGA мог работать и в текстовом режиме и в режиме графики.

Видеокарта IBM CGA

CGA отображал столько же строк и символов, сколько и MDA (25 по 80 или 40 символов). Однако, у символов было 16 цветов, хоть и располагались они на матрице 8*8 пикселей.

В графическом режиме CGA выводил изображение на экран в трех вариантах: 640*200 с цветом в 1 бит (монохром); 320*200 пикселей с 2 битами (4 цвета); 160*100 пикселей уже с цветом в 4 бита (16 различных цветов). Третий вариант технически был эмуляцией графики в текстовом режиме (происходила имитация пикселей при помощи наполовину закрашенной матрицы 8*8 пикселей).

Игры того времени - Solitare

Порт, передающий видеосигнал в цифре, у CGA был девятиконтактным, также как и порт у MDA, и у него был выход для работы с цветным телевизором. CGA работал с одноцветным дисплеем для MDA. И так было до 1984 года. До появления EGA адаптера.

Игры того времени - Wilf

Развитие видеокарт пошло по принципу роста количества цветов и пикселей в разрешении. Появившийся в 1984 году Enhanced Graphics Adapter (EGA) выводил на экран 16 цветов (4 бита) при разрешении в 640*350 пикселей. Видеопамять стала сперва 64 кб, а потом доросла до 256 кб, благодаря чему EGA справлялся с несколькими страницами памяти. По этой причине процессор формировал несколько кадров изображения сразу, т.е. получилось некое ускорение графики.

EGA - 16 цветов, 640х350 точек

Улучшение графики в EGA-играх - Yorick

Улучшенная графика - Ancient Art of War

Такие графические адаптеры не имели аналогов несколько лет, что в наши дни себе трудно вообразить. Это происходило до 1987 года, когда на ПК пользователи ставили наилучший для них адаптер – EGA. Но все же, в этом году появился другой, названный VGA (Video Graphics Array).

Этот адаптер был создан для новых ПК IBM PS/2. Проектируемое семейство должно было не использовать открытую архитектуру, и, к сожалению, оно было совершенно не успешным на рынке. Хотя и многие идеи этого семейства были приняты пользователями. Например, MCGA (Multi-Color Graphics Array), графический адаптер, который подключался к PS/2 компьютерам через системную плату, был изменен на плату для шины ISA. Это и есть VGA.

Разрешение у VGA было 640*480 пикселей и 16 цветами, либо 320*240 с 8-битным цветом (256 цветов). До фотореализма далековато, но все же шаг сделан. VGA получил новый интерфейс – 15-контактный D-Sub, который стал стандартом и сохранился даже до наших дней в некоторых ПК. Одной из особенностей была совместимость с приложениями для EGA, CGA и MDA, благодаря чему они работали на VGA.

Благодаря присутствию на борту адаптера 256 кб видеопамяти, VGA хранил по нескольку кадров, да еще и со шрифтом. Говорят, что когда использовался весь объем памяти, на экран можно было вывести кадр с разрешением 800*600 пикселей! Хотя это не подтверждено.

IBM VGA с новым интерфейсом

Слегка производительней

Как и в случае с предыдущими адаптерами для PS/2 IBM выпустила 2 адаптера: MCGA (VGA), который был строенным, а также продаваемый в качестве апгрейда 8514/А. Последний выводил изображение с разрешением 1024*768 точек и имел 8 бит цвета. К тому же создатели этого адаптера дополнили его еще некоторыми возможностями по ускорению графики, благодаря чему он выполнял часть функций по подготовке кадра.

8514/A рисовал линии, выполнял заливку части кадра, а также накладывал битовую маску и все это в своей видеопамяти. Это было существенным плюсом для приложений инженерной графике, ну а особенно это было заметно при создании диаграмм. Конечно же, нужна была помощь и от программ, которую они скоро и оказали.

Нельзя не отметить, что тогда графические станции профессионалов имели дополнительные сопроцессоры для графики, которые размещались на отдельных платах. Такие сопроцессоры были очень дорогостоящими и имели множество возможностей. Несмотря на ограниченную функциональность, 8514/A был намного дешевле, а это очень важный фактор для сферы ПК.

Игра Манджонг на 8514/A

Наступил 1990 год и появился XGA (Extended Graphics Array). Он сменил 8514/А и имел больше возможностей. Единственным изменением стал режим с разрешением 800*600 точек и 16 битами цвета (65 536 цветов, High Color). XGA положил начало доминированию различных адаптеров SuperVGA, а объемы видеопамяти и величина разрешения увеличивались год от года. Результатом этого стало то, что удивить качеством картинки покупателя становилось все сложнее. Соответственно, чтобы продавать новые дорогостоящие адаптеры, нужно было внедрять в них новые функции.

Старт 3D

Компанией-первооткрывателем 3D для компьютеров стала S3. Ее видеокарта S3 Virge поддерживала 4 Мб памяти VRAM или DRAM и стала наследником успеха Trio 64V+. Ядро и память обладали совсем смехотворной для наших дней частотой 80 МГц.

У этого адаптера появилась функция ускорения трехмерной графики. Благодаря этому создатели игр смогли пользоваться динамическим освещением и билинейной фильтрацией текстур, хоть и прибавку в скорости игр Virge не давала.

S3 Virge во всей красе

Компания быстро осознала, что ей, как первооткрывателю 3D, стоит внедрить свои платы в потребительский рынок. S3 стала заключать контракты с разработчиками Tomb Raider, Descent II, Mechwarrior 2, которые получили стандарт S3D. В S3 поняли, что необходимо распространять свой стандарт, получая тем самым, большее предпочтение покупателей, нежели другие производители. К функциям Virge можно, конечно, отнести поддержку OpenGL, однако производительность в использовании их была очень плохой. В функциях была заявлена даже поддержка Direct3D, несмотря на то, что почти все игры были для MS-DOS, и игры с Direct3D не были еще даже в планах.

Господство S3 на рынке видеоадаптеров длилось до 1996 года, когда появился ускоритель Voodoo Graphics от компании 3Dfx. И, несмотря на последующие обновления и улучшения, Virge так и остался всего лишь недорогой 2D-картой.

Сама 3Dfx появилась от понимания того, что для ПК необходима производительность в 3D, которая была хорошей в приставках того времени. Это поняли представители Silicon Graphics Гарри Таролли, Скотт Сеттерс и Росс Смит. Они и основали компанию.

Взяв кредиты, специалисты начали работу. Первые деньги и шаги в индустрии 3Dfx сделала на выпуске графических чипов для приставок того времени. А через год компания выпустила Voodoo Graphics. Новый адаптер был представлен на выставке Computex и вызвал огромный восторг. Такого плавного и красивого рендеринга 3D никто и не представлял. Качество графики было гораздо выше, нежели у Nintendo 64 и Playstation, которые только готовились выйти в свет. У Voodoo Graphics была заявлена поддержка и DirectX и OpenGL, хотя скорость была совсем небольшой. Но во время работы со своим интерфейсом, названным Glide, работало все очень хорошо. Разработчики игр тут же начали оптимизацию под Voodoo Graphics, не задумываясь о ее конкурентах. Выдаваемый адаптером режим разрешением в 640*480 точек и 16 бит цвета сейчас не удивляет совершенно, но в то время это для потребителей было даже впечатляюще.

Возможности Glide

Сам адаптер устанавливался в специальный слот PCI, однако не имел функций 2D. Принцип работы состоял в перехвате управления в режиме 3D у обычного адаптера, через который он и подключался к монитору. Совмещение качественных 2D и 3D адаптеров сначала выглядело очень интересным и пользовалось популярностью пользователей. В том же году вышел 3D-ускоритель Rendition Verite V1000, у которого были функции 2D-видеокарты, однако при высоком разрешении он затуманивал изображение. Из-за этого также не пользовался популярностью Voodoo Rush, который вышел годом позже и был полноценной видеокартой с 3D-ядром Voodoo Graphics.

Видеокарта Voodoo Graphics

У Voodoo Graphics было 3 Мб EDO DRAM, которая работала на частоте 50 МГц, аналогичной процессору. На исходе 1996 года произошло падение цен на EDO DRAM и 3Dfx начало продавать адаптеры относительно дешево, вызывая тем самым всплески своей популярности у потребителей. Однако собственных адаптеров 3Dfx не реализовывала. Она была поставщиком их для партнеров. Самым популярным был Diamond Monster 3D, благодаря которому товары 3Dfx стали называться «монстрами».

Видеокарта Diamond Monster - на вид не такой уж и монстр

Опытные конкуренты

Легендарный Quake на Riva128

Но 3Dfx не была единоличным владельцем рынка. Появившаяся еще в 1985 году компания ATI, начав с «клонирования» IBM 8514/A, имела опыт и достаточную известность к появлению первого адаптера от 3Dfx. К 1995 году у нее был уже Rage адаптер, который выдавал отличную 2D картинку, имел возможности 3D и мог обрабатывать сжатый видеопоток MPEG-1. Выпуск 3D Rage II произошел в середине 1996 года. Этот ускоритель был в 2 раза быстрее предшественника и обрабатывал уже формат MPEG-2 (DVD). У ускорителя была поддержка Direct3D и OpenGL (частично). На борту он нес 8 Мб SDRAM, а процессор и память имели частоту 60 и 83 МГц соответственно. Несмотря на заметный недостаток в производительности в 3D-рендеринге, карта имела отличное 2D-изображение и могла аппаратно ускорять видео на начальном уровне.

Появившаяся на пару лет раньше 3Dfx, компания NVIDIA в 1995 году выпустила свой первый, хоть и провальный, продукт NV1. Он совмещал 3D-ускоритель, 2D-адаптер, а также адаптер звука и порт для геймпада Sega Saturn. Он был дорогим, и архитектура была у него странная: 3D появлялось из кривых третьего порядка, а не из полигонов. Для создателей игр этот подход был слишком оригинален и сулил немало трудностей в создании движка для игры. Ну а когда появился Direct3D, NV1 окончательно канул в лету.

Несмотря на это и на потери в сотрудниках и деньгах, NVIDIA смогла выпустить совсем другой продукт, названный NVIDIA Riva 128, базировавшийся на чипе NV3 и имевший 4 Мб (а в версии 128ZX - 8мб) SDRAM, шину в 128 бит и рабочую частоту в 100 МГц. Производительность в 3D у него была на уровне Voodoo Graphics, и выпускался он в 2 вариантах: PCI и AGP, который не поддерживали продукты 3Dfx. Riva 128 помог NVIDIA не стать банкротом. Однако, ничья у 3Dfx и NVIDIA была всего лишь в непопулярном в то время Direct3D.

То, что на рынке появлялись все более новые и совершенные 3D-игры и видеоплаты, послужило поводом создания более совершенных и быстрых видеокарт. Вехой истории видеокарт был 1998 год, который стал годом рождения адаптера Voodoo2, обладавшего 8 или 12 Мб памяти EDO DRAM на борту и работавший на частоте в 100 МГц.

Voodoo2 с первым в мире SLI

Архитектура Voodoo2 была практически такая же, как и в Voodoo за исключением нескольких особенностей. Первой особенностью являлся дополнительный текстурный блок, с помощью которого за 1 проход рендеринга можно было накладывать до двух текстур за проход, что гораздо увеличило производительность. Вторая особенность – картинка, выводимая адаптером. Разрешение картинки достигало 1024*768 пикселей при 12 Мб памяти и 800*600 в случае с 8 Мб памяти при режиме цвета в 16 бит. Но главное инновацией был режим SLI, который позволял совместно работать сразу двум Voodoo2. Эта система была очень и очень дорогостоящей, однако аналогов у фирм-конкурентов не было и в помине, а производительность была невероятной.

Мощнейшая конструкция: две Voodoo2 в режиме SLI

В этом году NVIDIA не смогла нагнать 3Dfx, но появившаяся в том году Riva TNT (NV4) стала толчком к успеху компании. За 2 года специалисты NVIDIA создали новую архитектуру, которая дала RIVA TNT 2 конвейера для рендеринга, то есть она так же, как и Voodoo2 накладывала 2 текстуры за проход. RIVA TNT работала на частоте 90 МГц, а память у нее была SDRAM, объем которой был 16 Мб.

RIVA TNT от NVIDIA

Глубина цвета у продукта NVIDIA была 32 бита, однако производительность при этом режиме уменьшалась аж в 2 раза, что было негативно встречено покупателями. Несмотря на это RIVA TNT положила начало рендерингу в 32-битном цвете, и вскоре появились модели, которые давали приемлемую производительность в этом режиме. Еще у RIVA TNT была возможность работы с текстурами 1024*1024 пикселей, а для Voodoo2 максимумом были текстуры размером 256*256 точек.

Развитие в те годы библиотеки Glide от 3Dfx было серьезной проблемой для NVIDIA, помощь в решении которой оказывала, сама того не зная, Microsoft, активно распространявшая Direct3D.

Компания ATI пыталась не отставать от своих конкурентов и выпустила в 1998 году свою 3D Rage Pro, которая не имела особого успеха и преимущества перед конкурентами. Единственное, чем могла похвастаться эта видеокарта, так это производительность при обработке сжатого потока DVD. Производительность в 3D у этого продукта была не лучше видеокарт предыдущего поколения, а поддержка OpenGL была всего лишь «для галочки». По этим причинам 3D Rage Pro почти никак не была оценена потребителями и стала всего лишь хорошим 2D-адаптером.

К слову о 2D . В те годы было множество производителей 2D-адаптеров, лидером среди которых была фирма Matrox, которая представила в 1998 году свой адаптер, предназначенный как для 2D, так и для 3D. Этот чип полностью поддерживал 3D-рендеринг и мог держать конкуренцию с Riva TNT от NVIDIA в плане производительности.

G200 обладал великолепной производительностью в 2D, и, помимо этого, обеспечивал высокое качество рендеринга в 3D при 16 и 32 битах цвета. Рабочей частотой для G200 являлись от 84 до 90 МГц, он оснащался двумя шинами данных в 64 бита каждая. Обеспечивая такую же пропускную способность, данное решение давало меньше латентности по сравнению с обычной 128-битной шиной. К тому же, благодаря технологии DIME, адаптер мог хранить текстуры с разрешением до 2048*2048 пикселей в системной памяти, а это решение дало возможность остановиться на объеме видеопамяти в 8 Мб, что помогло продукту стать дешевле.

3D Rage Pro с разъемом для дополнительно подключаемой памяти

На закате 90-х лидерами производства видеокарт были 3Dfx, занимавшая прочное первое место, за ним следовала NVIDIA, ну а далее их пыталась догнать толпа других производителей (среди которых выделялись ATI, Matrox и S3), которые на то время были статистами. Определяющим стал 1999 год.

В начале года были анонсированы Voodoo3, G400, Rage 128 и Riva TNT2. Рабочая частота у детища 3Dfx была 183 МГц и этот адаптер поддерживал SLI. Однако технологические новинки обошли стороной адаптер от 3Dfx, у которого были возможности 2D-адаптеров, однако у него был всего один конвейер для рендеринга и он не поддерживал 32 бита цвета и текстуры большого разрешение.

Voodoo 3 от 3Dfx

Ответом от NVIDIA стал чип NV5, устанавливавшийся в TNT2. Главным для NVIDIA было соответствие технологической новизне. Таким образом Riva TNT2 первой получила поддержку AGP 4x, обеспечивала неплохую производительность рендеринга при 32 битах цвета, а работала она на частоте до 150 МГц и 183 МГц для памяти. На то время TNT2 была полностью конкурентоспособным соперником для Voodoo3. Таким образом, безоговорочное лидерство 3Dfx на данном этапе истории видеокарт оказалось под сомнением.

Не отставать от гигантов смогла и Matrox, выпустившая G400. Технологии компании, которые были внедрены в чип G200, получили развитие. У G200 были две шины в 128 бит каждая, частотой в 125-150 МГц, и шину памяти в 128 бит с частотой 166-200 МГц. Новинкой стала технология EMBM (Environment mapped Bump mapping), которая стала аппаратной поддержкой эффектов рельефности текстур. Благодаря ей графика вышла на принципиально новый уровень.

Matrox Millenium G400MAX и ее два разъема для подключения мониторов

Представление технологии EMBM

Ко всему прочему у G400 впервые появилась поддержка двух мониторов. Таким образом G400 смогла на время выйти на первое место среди видеокарт. К сожалению, G400 теряла производительность в работе с OpenGL играми, а большинство игр того времени не поддерживали Direct3D.

ATI, все еще отстававшая от лидеров, выпустила достаточно интересный для геймеров Rage 128. Он был гораздо дешевле новинок от NVIDIA и 3Dfx, однако скорость рендеринга при 32 битах цвета была выше RivaTNT, а также чип получил поддержку OpenGL и Direct3D. Таким образом дела у ATI пошли гораздо лучше.

Небольшой рывок от ATI: их Rage 128

К концу 1999 года наступил еще один этап противостояния лидеров производства видеокарт. 3Dfx запустил VSA-100, который должен был исправить отставания в технологическом плане, NVIDIA готовила NV10, обещавший стать «сюрпризом», а ATI и S3 пытались прорваться на передовые позиции своими Rage Fury MAXX и Savage 2000 соответственно. Что же предлагали пользователям эти компании?

VSA-100 обладала технологией T-Buffer, которая обеспечивала постобработку изображения использующую кинематографические спецэффекты. Полноэкранное сглаживание (Full-scene Anti-aliasing), размытие в движении (Motion Blur), глубина резкости (Depth Of Field) и мягкие тени (Soft Shadows) должны были улучшить качество картинки без падения производительности.

Преимуществом NVIDIA стала технология расчета трансформации и освещения (Transform and Lighting, T&L). С использованием этой технологии с центрального процессора снималась часть задач по расчету вершин треугольников, обеспечивая тем самым прирост производительности в играх.

ATI Rage Fury MAXX был по сути своей соединением двух Rage 128 Pro на одной плате, которые формировали кадры по очереди. Стоимость должна была стать огромной.

Слишком дорогая ATI Rage Fury MAXX

S3 Savage 2000 обладал T&L, как и продукт NVIDIA, у него была передовая технология сжатия текстур. Этот адаптер планировался как дешевая, более технологичная альтернатива Voodoo3, способная вытеснить NVIDIA на второй план.

На деле же все оказалось совсем не так. 3Dfx не успела выпустить свои Voodoo4, Voodoo5 и Voodoo6 до лета 2000 года. А вот NVIDIA смогла к тому времени вывести в свет свой NV15, который был гораздо мощнее Voodoo6. Voodoo 4 и Voodoo5, обладавшие одним чипом серьезно проигрывали конкурентам в плане производительности, а двух- и четырехчиповые Voodoo5 были дорогостоящими и изрядно грелись. Это явилось ударом для 3Dfx, которая не так давно была флагманом производства видеокарт. Потерю лидирующей позиции сразу заметили кредиторы.

Шумный и совсем не быстрый Voodoo5 с 4 чипами

Выход Savage 2000 от S3 состоялся немного позднее. T&L и сжатие текстур на самом деле хорошо работали и давали увеличение производительности, но только при поддержке этих технологий приложениями. Таким образом при отсутствии данной поддержке Savage 2000 серьезно проигрывал конкурентам, а S3 совершенно не интересовал создателей игр. Помимо прочего, у этого продукта были большие проблемы с установкой драйверов, а также со сравнительно низкой производительностью блока T&L. Несмотря на это, технология S3TC, которая занималась сжатием текстур, заинтересовала компанию Microsoft, и они выкупили ее и лицензировали под названием DXTC. Соответственно, видеокарты всех компаний смогли получить эту технологию.

Адаптер от ATI в целом стал удачным решением, но не для своей цены. К тому же для него было очень сложно написать драйвер, который программисты ATI смогли выпустить лишь через несколько месяцев после того, как появился сам адаптер.

Лучше всех стал адаптер NVIDIA. GeForce 256 смог опередить все другие адаптеры за счет отличной функциональности. У него было четыре конвейера рендеринга, рабочая частота 120 МГц и 32 Мб памяти (с частотой 166 МГц и 128-битной шиной) SDRAM (которая с 2000 года стала DDR SDRAM). Не забыли в NVIDIDA и про T&L, который начинали поддерживать все выходящие игры.

Великолепная GeForce 256

К сожалению, свой штрих в этот этап истории видеокарт не смогла вписать Matrox. Они не последовали принципу выпуска новых адаптеров каждые 6 месяцев, а G400 проигрывал GeForce из-за плохой производительности в OpenGL, а также пресловутого T&L. Так, G400 стал востребованным лишь теми, кому нужно было использовать для работы или игры 2 монитора. У Matrox просто-напросто кончились идеи.

Пара слов о TRUFORM

Различие карт бюджетного класса и карт топ-класса крайне сильно заметно. Один из самых главных показателей этого – сумма треугольников в кадре. Чем она выше, тем мощнее видеокарта и понадобится. А что касается создателей игр? Зачем создавать много различно детализированных моделей в зависимости от уровня видеокарты? С ответом помогли в ATI созданием TruForm.

Тот чип, который поддерживает эту технологию, может изменять как полигональные объекты в линейные, так и обратно. В итоге, модели получают плавность выше задуманной.

Единственным минусом становится то, что технологии просто необходимо присутствие маркеров, которые указывают то, чем, где и как можно усложнить модель и сделать ее плавнее. А вот без этих маркеров будут артефакты, такие как кубы, ставшие шарами и т.д. А без поддержки создателей продукта с 3D-графикой от этих артефактов никак не избавиться…

Борьба передовиков

Все шло к тому, что NVIDIA единолично возглавит рынок. Она купила банкротов 3Dfx с ее работниками и разработками, созданный NVIDIA чип NV15 стал хорошей модернизацией чипов NV10, а дешевые версии ее чипов заняли весь рынок, вытеснив конкурентов.

Но ATI доказала NVIDIA свою полную конкурентоспособность. В июне 2000 года они выпустили ATI Radeon, у которого было 64 Мб DDR SDRAM с шиной 128 бит, и он работал на частоте 183 МГц. Как и у адаптера NVIDIA, у Radeon был блок T&L, тем самым ATI показала и доказала потребителям то, что у компаний нет никакого технологического разрыва. К тому же их продукт оказался дешевле.

Однако, в Matrox пока не отчаивались. Они выпустили G450, являвшийся более совершенной версией G400 и был создан с использованием новых технологических норм (180 против 250 нм в сравнении с G400), а память была более быстрая, однако на 64-разрядной шине, что не изменяло скорость обмена с памятью. В теории то, что у G400 был использован новый техпроцесс, должно было увеличить тактовую частоту чипа, чего не произошло. В итоге G450 разочаровал геймеров, и Matrox догнать ATI и NVIDIA не смогла.

  • Описание лабораторной установки. В качестве автотрансформатора для исследования используется одна фаза обмоток ВН и НН сухого трехфазного двухобмоточного трансформатора
  • Описание лабораторной установки. В качестве трансформатора для исследования используется сухой трехфазный двухобмоточный трансформатор
  • Описание экономической сущности задачи. Для оценки деятельности предприятия используется система показателей, которая характеризует эффективность производства
  • Способствует возникновению пылкой страсти и сексуального влечения со стороны Вашего партнёра, в связи с этим часто используется при создании приворотных формул

  • Видеопамять (или VRAM, произносится как vee-RAM) — это особый тип оперативной памяти, который работает с графическим процессором вашего компьютера или графическим процессором видеокарты. Ваша видеопамять содержит информацию о том, что требуется графическому процессору, например, текстуры игр и световые эффекты.

    Однако, если этот вариант вам не подходит (например, на ноутбуках), вы можете увеличить свою выделенную VRAM двумя способами. Они должны содержать опцию для настройки того, сколько памяти вы выделяете для графического процессора.

    Вполне понятно, нам стало интересно, как гибридное использование общей и выделенной графической памяти сказывается на 3D-производительности. То же самое проявляется и в ситуациях, когда общий объём требуемой памяти превышает доступный максимум 256 Мбайт графической подсистемы, состоящий из 128 Мбайт выделенной и 128 Мбайт общей памяти. Впрочем, данный тест представляет чисто академический интерес, поскольку производительности встроенного графического ядра всё равно недостаточно для современных игр с максимальным качеством картинки.

    Выделенная графическая память и встроенный графический процессор?

    Для графики можно выделить до 256 Мбайт памяти. Когда графическая подсистема нагружена незначительно, система отключает часть линий PCIe, даже в режиме оптимальной производительности. Система работает с выделенной видеопамятью через так называемый SidePort.

    Как добавить видеопамять из оперативной

    Это значение и есть полный объем памяти, который может использовать видеокарта — сумма объемов встроенной памяти и выделяемой из оперативной памяти компьютера. Отсутствие таких или похожих пунктов меню в BIOS может означать, что ваша материнская плата не поддерживает установку максимального объема выделяемой видеопамяти. Своей памяти интегрированная видеокарта не имеет и использует оперативную память компьютера. Как узнать объем памяти видеокартыОбъем видеопамяти компьютера является одной из самых важных характеристик компьютера. Как расширить память видеокартыОдним из главных компонентов компьютера является видеокарта.

    Как увеличить видеопамять за счет оперативной (распределяемой) через BIOS

    Вопрос: Что такое выделенная, и что такое выделяемая видеопамять? Ответ: Память на видеокартах может быть как выделенной, так и выделяемой. Выделенная память означает, что видеопамять реализуется путем размещения на карте нескольких микросхем памяти. В таких видеокартах есть небольшой объем собственной видеопамяти, используемый для традиционных 2D-операций, а также для организации буфера RAMDAC. Когда отпадает потребность в дополнительной памяти, она высвобождается для общесистемных нужд. В видеокартах ATI такая память обозначается как HyperMemory, а в видеокартах NVIDIA — TurboCache.

    Как увеличить видеопамять с применением таких настроек? Для улучшения производительности изменяется параметр апертуры, обозначенный как AGP OverVoltage. Для примера возьмем 16 Мб памяти интегрированного адаптера и 256 Мб основной оперативной памяти. В настройках VGA Shared Memory (он же буфер UMA) нужно установить требуемый параметр, однако выставлять максимальное значение не рекомендуется.

    Чтобы изменить количество памяти, выделенной под видеокарту, вы должны внести изменения в настройки BIOS. Чтобы войти в BIOS, выйдите из окна и выключить компьютер.

    Как увеличить видеопамять и стоит ли это делать?

    Вы увидите текущую видеопамять, указанную рядом с выделенной видеопамятью. 1-2 ГБ VRAM: эти карты обычно обеспечивают лучшую производительность, чем встроенная графика, но не могут обрабатывать большинство современных игр при средних значениях. Если VRAM заполняется, система должна полагаться на стандартную ОЗУ, и производительность будет снижаться. Фактически, для интегрированной графики значение выделенной видеопамяти полностью фиктивно. У вас есть выделенная видеокарта или вы используете интегрированную графику?

    Память видеокарты. Возможность увеличения видеопамяти

    Видеопамять - часть оперативной памяти, отведённая для хранения данных, которые используются для формирования изображения на экране монитора. Существует выделенная оперативная память для видеокарт, также называемая «Видеопамятью».

    Интегрированные видеокарты, как правило, применяются в ноутбуках. Чтобы выполнить операцию по увеличению памяти, необходимо войти в BIOS-меню компьютера. Дальнейшие действия, в значительной мере, зависят от модели системной платы и даже версии BIOS. Настройки видеопамяти – именно та опция, которую нам необходимо отыскать для увеличения видеопамяти. Из списка значений возможного размера оперативной памяти, который можно выделить для работы видеокарты выбираем нужное значение.

    Здесь мы видим всю необходимую информацию: модель графического процессора и объем видеопамяти. Существуют кастомные драйвера, которые добавляют некоторые свойства таким видеоядрам, например, поддержку более новых версий DirectX, шейдеров, увеличенных частот и прочего. Использование встроенного графического ядра несет в себе пониженную производительность в играх и приложениях, которые используют видеокарту. Вместе с тем, если для повседневных задач не требуется мощь дискретного адаптера, то встроенное видеоядро вполне может стать бесплатной альтернативой последнему. Не стоит требовать от интегрированной графики невозможного и пытаться «разогнать» ее при помощи драйверов и другого программного обеспечения.

    MDRAM (англ. Multibank RAM ) - тип памяти, разработанный фирмой MoSyS Inc. Память данного типа состоит из множества банков по 32 Кб (позднее число банков возросло). Используется только тот объём памяти, который необходим в данный момент. Хоть производительность от этого особо и не увеличилась, удалось снизить цену.

    Примечания

    Ссылки


    Wikimedia Foundation . 2010 .

    • Вьетнамская фондовая биржа
    • Северноюкагирский язык

    Смотреть что такое "VRAM" в других словарях:

      VRAM - (computing) abbrev Video random access memory * * * [ vēˌram] n. Electronics a type of RAM used in computer display cards Origin: 1990s: abbreviation of video RAM * * * vram southern ME. var. from … Useful english dictionary

      VRAM - may stand for: * Video RAM, a type of computer memory * Veil Rights Assertion Mark, a DRM system using Video Encoded Invisible Light technology … Wikipedia

      VRAM - das, Arbeitsspeicher Chip, der in Grafikkarten benutzt wird. Er erlaubt gleichzeitige Schreib und Lesezugriffe, da er über getrennte Ein und Ausgänge verfügt. So… … Universal-Lexikon

      VRAM - (Video RAM) n. very fast random access memory used in high quality video cards (Computers) … English contemporary dictionary

      VRAM - DEFINICIJA krat. inform. vrsta računalne memorije s posebnim pristupom; koristi se kod grafičkih aplikacija i sl. ETIMOLOGIJA engl. Video Random Access Memory … Hrvatski jezični portal

      VRAM - Als Video Random Access Memory (VRAM) bezeichnet man einen mit DRAM technologisch verwandten Speichertyp, der vor allem in den 90er Jahren als lokaler Speicher auf Grafikkarten Anwendung fand. Wichtigste Eigenschaft des Speichers sind getrennte… … Deutsch Wikipedia

      VRAM - Memoria gráfica de acceso aleatorio (Video Random Access Memory) es un tipo de memoria RAM que utiliza el controlador gráfico para poder manejar toda la información visual que le manda la CPU del sistema. La principal característica de esta clase … Wikipedia Español

      VRAM

      VRam - Mémoire vidéo Dans un dispositif électronique (ordinateur, téléphone mobile, etc.), la mémoire vidéo est un type de mémoire vive rapide dédié au stockage des éléments destinés à être affichés. Elle est habituellement nommée VRAM (Video Random… … Wikipédia en Français

      VRAM - ● en /vram/ (ou vi ram à l anglaise) sg. f. RAMROM ● 1. Video Read Only Memory. mémoire vive pour la vidéo fonctionnant à double entrée, donc plus rapidement que les autres types de mémoire, puisqu on peut y écrire et y lire en même temps. Voir … Dictionnaire d"informatique francophone

    У вас случались ошибки, связанные с видеопамятью на вашем ПК с Windows? Сложности с запуском графических программ, таких как видеоредакторы и новые видеоигры? Если да, то возможно, вам требуется больше видеопамяти.

    Но что это такое и как вы можете ее увеличить? В этой статье я поделюсь с вами всем, что я знаю о видеопамяти, поэтому читайте дальше!

    Что такое видеопамять?

    Видеопамять (или VRAM, произносится как vee-RAM) - это особый тип оперативной памяти, который работает с графическим процессором вашего компьютера или графическим процессором видеокарты. GPU - это чип на графической карте вашего компьютера (или видеокарте), который отвечает за отображение изображений на экране.

    Хотя технически неверно, но термины GPU и графическая карта часто используются взаимозаменяемо.

    Ваша видеопамять содержит информацию о том, что требуется графическому процессору, например, текстуры игр и световые эффекты. Это позволяет графическому процессору быстро получать доступ к информации и выводить видео на монитор. Использование видеопамяти для этой задачи намного быстрее, чем использование вашей оперативной памяти, поскольку видеопамять находится рядом с графическим процессором на графической карте и построена для этой высокоинтенсивной цели.

    Вы можете легко просмотреть объем видеопамяти, который у вас есть в Windows 10, выполнив следующие шаги:

    1. Откройте меню «Параметры», нажав сочетания клавиш «Windows + I ».
    2. Выберите «Система», затем нажмите «Экран» на левой боковой панели.
    3. Прокрутите вниз и щелкните текст «свойства графического адаптера».
    4. В появившемся окне, перейдите на вкладку «Адаптер» и посмотрите раздел «Информация о адаптере».
    5. Вы увидите текущую видеопамять, указанную рядом с выделенной видеопамятью.

    В разделе «Тип адаптера» вы, вероятно, увидите название вашей видеокарты NVIDIA или AMD, в зависимости от того, какое устройство у вас есть. Если вы видите AMD Accelerated Processing Unit или Intel HD Graphics (скорее всего), вы используете интегрированную графику.

    Что означает интегрированная графика?

    До сих пор в нашем обсуждении предполагалось, что на вашем ПК имеется специальная видеокарта. В большинстве компьютеров, которые пользователи собирают самостоятельно или покупают готовый игровой ПК есть видеокарта. Некоторые более мощные ноутбуки также содержат графическую карту. Но на бюджетном настольном ПК или готовом ноутбуке производители не включают в себя видеокарты - вместо этого они используют интегрированную графику.

    Интегрированное графическое решение означает, что GPU находится на том же уровне, что и процессор, и использует обычную системную память вместо использования собственного выделенного VRAM. Это недорогое решение и позволяет ноутбукам выводить базовую графику без необходимости использования видеокарты с пространственной и энергетической безопасностью. Но интегрированная графика плохо подходит для игровых и графических задач.

    Насколько мощная ваша интегрированная графика зависит от вашего процессора. Новые процессоры с графикой Intel Iris Plus являются более мощными, чем их более дешевые и более старые аналоги, но по-прежнему бледны по сравнению с выделенной графикой.

    При использовании интегрированной графики, у вас не должно быть проблем с просмотром видео, играми с низкой интенсивностью, и работой с базовыми приложениями для редактирования фото и видео. Однако играть в новейшие графически впечатляющие игры со встроенной графикой в принципе невозможно.

    Для каких задач нужна видеопамять?

    Прежде чем говорить конкретные цифры, я должен упомянуть, какие аспекты игр и других приложений с интенсивной графикой используют много VRAM.

    Большим фактором в потреблении VRAM является разрешение вашего монитора. Видеопамять хранит буфер кадра, который содержит изображение до и в течение времени, когда ваш графический процессор отображает его на экране. Более мощные дисплеи (например, игры на экране 4K) занимают больше VRAM, поскольку изображения с более высоким разрешением занимают больше пикселей для отображения.

    Помимо вашего дисплея, текстуры в игре могут существенно повлиять на количество VRAM, в котором вы нуждаетесь. Большинство современных компьютерных игр позволяют вам точно настраивать производительность или качество изображения. Вы можете играть в игру в режиме «Низкий» или «Средний» с более дешевой картой (или даже интегрированной графикой). Но высокое или ультра-качество, или пользовательские моды, которые заставляют текстуры внутри игры выглядеть даже лучше, чем задумали разработчики, потребуется много ОЗУ.

    Декоративные функции, такие как сглаживание, также используют больше VRAM из-за дополнительных пикселей. Если вы играете на двух мониторах одновременно, это еще более интенсивно.

    Конкретные игры также могут требовать разное количество VRAM. Игра, подобная Overwatch, не слишком требовательна к графике, но игра с множеством современных эффектов освещения и подробными текстурами, такими как Assassin"s Creed Origins, требует больше ресурсов.

    И наоборот, дешевая карта с 2 ГБ VRAM (или встроенной графикой) достаточна для игры в старые компьютерные игры или эмуляция ретро-консолей.

    Тогда у игр не было более 2 ГБ VRAM.

    Даже если вы не заинтересованы в играх, некоторые популярные программы также требуют значительного количества VRAM. Программное обеспечение 3D-дизайна, такое как AutoCAD, особенно интенсивные изменения в Photoshop, и редактирование высококачественного видео будут страдать, если у вас недостаточно видеопамяти.

    Надеюсь, ясно, что нет идеального количества VRAM для всех. Тем не менее, я могу предоставить некоторые базовые рекомендации о том, сколько VRAM вы должны иметь в графической карте.

    • 1-2 ГБ VRAM: эти карты обычно обеспечивают лучшую производительность, чем встроенная графика, но не могут обрабатывать большинство современных игр при средних значениях. Покупайте карту с этим количеством VRAM, если вы хотите играть в старые игры, которые не будут работать со встроенной графикой. Не рекомендуется для редактирования видео или работы 3D.
    • 3-6 ГБ VRAM: эти карты среднего диапазона хороши для умеренных игр или несколько интенсивного редактирования видео.
    • 8 ГБ VRAM и выше: карты высокого класса, с этой большим ОЗУ для серьезных геймеров. Если вы хотите играть в новейшие игры с разрешением 4K, вам нужна карта с большим количеством VRAM.

    Производители графических карт добавляют на карту соответствующее количество VRAM в зависимости от того, насколько мощный GPU. Таким образом, дешевая видеокарта будет иметь небольшое количество VRAM, тогда как дорогая видеокарта будет иметь намного больше.

    Проблемы с видеопамятью

    Помните, что, как и обычная оперативная память, больше VRAM не всегда означает лучшую производительность. Если ваша карта имеет 4 ГБ VRAM, и вы играете в игру, которая использует только 2 ГБ, обновление до карты на 8 ГБ не сделает ничего заметного.

    И наоборот, отсутствие достаточного количества VRAM - огромная проблема. Если VRAM заполняется, система должна полагаться на стандартную ОЗУ, и производительность будет снижаться. Вы заметите более низкую частоту кадров, текстурные всплывающие окна и другие неблагоприятные эффекты. В крайних случаях игра может замедлить отображение на экране и стать неиграбельной (что-то менее 30 FPS).

    Помните, что VRAM является лишь одним из факторов производительности. Если у вас недостаточно мощный процессор, рендеринг видео высокой четкости займет много времени. Отсутствие системной памяти не позволяет запускать сразу несколько программ, а использование механического жесткого диска сильно ограничит производительность вашей системы. И некоторые более дешевые видеокарты могут использовать медленный DDR3 VRAM, который уступает DDR5.

    Лучшим способом узнать, какая видеокарта и объем видеопамяти вам подходит, - это поговорить с кем-то знающим. Спросите друга, который знает о последних видеокартах, или поспрашивайте на форуме, будет ли определенная карта работать для ваших нужд.

    Как увеличить видеопамять

    Лучший способ увеличить объем видеопамяти - купить графическую карту. Если вы используете интегрированную графику и получаете плохую производительность, обновление до выделенной карты сделает чудеса для вашего видеовыхода. Однако, если этот вариант вам не подходит (например, на ноутбуках), вы можете увеличить свою выделенную VRAM двумя способами.

    Первая - настройка распределения VRAM в BIOS вашего компьютера. Войдите в BIOS и найдите меню с расширенными функциями набора микросхем или аналогичными (Advanced Chipset Features). Внутри этого поиска найдите вторичную категорию, которая называется «Графические настройки», «Настройки видео» или «Размер общей памяти VGA» (Graphics Settings, Video Settings, VGA Share Memory Size).

    Они должны содержать опцию для настройки того, сколько памяти вы выделяете для графического процессора. По умолчанию обычно 128 МБ, попробуйте увеличить его до 256 МБ или 512 МБ, если у вас есть достаточно, чтобы сэкономить. Однако не каждый процессор или BIOS имеет этот параметр. Если вы не можете его изменить, есть временное решение, которое может вам помочь.

    Подделка увеличения

    Поскольку большинство интегрированных графических решений автоматически настраиваются на использование необходимого объема оперативной памяти, детали, о которых говорится в окне «Свойства адаптера», не имеют большого значения. Фактически, для интегрированной графики значение выделенной видеопамяти полностью фиктивно. Система сообщает фиктивное значение чтобы игры видели что-то, когда проверяют, сколько у вас VRAM.

    Таким образом, вы можете изменить значение реестра, чтобы изменить количество VRAM, которое ваша система сообщает играм. Это фактически не увеличивает ваш VRAM, оно просто изменяет это фиктивное значение. Если игра не запускается, потому что у вас «недостаточно VRAM», повышение этого значения может исправить проблему.

    Откройте окно редактора реестра, введя «regedit» в окно «Выполнить». Помните, что вы можете испортить свою систему в реестре, так что будьте осторожны, находясь здесь.

    Направляйтесь в следующее место:

    HKEY_LOCAL_MACHINE\Software\Intel

    Щелкните правой кнопкой мыши папку Intel на левой боковой панели и выберите «Создать»> «Раздел». Назовите этот раздел GMM. После того, как вы сделали это, выберите новую папку GMM слева и щелкните правой кнопкой мыши в правой части. Выберите «Создать»> «DWORD» (32-разрядное) значение. Назовите ее «DedicatedSegmentSize» и придайте ей значение, убедившись, что вы выбрали опцию «Decimal». В МБ минимальное значение равно 0 (отключение записи), а максимальное - 512. Установите это значение, перезагрузите компьютер и посмотрите, помогает ли он игре.

    Эти методы не гарантируют работу, но их все равно стоит попробовать, если у вас возникнут проблемы. Если у вас не так много системной памяти и у вас проблемы с играми со встроенной графикой, попробуйте добавить дополнительную RAM для использования интегрированной графики.

    Теперь вы понимаете, что такое видеопамять

    Теперь вы знаете, что такое видеопамять, сколько вам нужно и как ее увеличить. В конце концов, помните, что видеопамять - это небольшой аспект общей производительности вашего компьютера. Слабый графический процессор не будет работать даже с большим количеством VRAM. Поэтому, если вы хотите увеличить игровые и графические характеристики, вам, скорее всего, придется сначала обновить графическую карту, процессор и / или оперативную память.

    У вас есть выделенная видеокарта или вы используете интегрированную графику? Вы когда-нибудь сталкивались с ошибкой, связанной с VRAM? Напишите это в комментариях!

    Так как видеокарта является, по сути, «компьютером в компьютере», то у неё естественно имеется и своя видеопамять, которая является одной из её основных составляющих.

    Для чего же нужна видеопамять? Задача видеопамяти довольно логично вытекает из её названия – запоминать видеоданные. Видеопамять играет роль некого кадрового буфера, в который направляются видеоданные, для дальнейшего считывания и обработки их графическим процессором , также здесь хранятся текстуры .

    Рис. Видеопамять GDDR5

    Если по своему назначению видеопамять напоминает оперативную память , то логично, что и параметры (характеристики) у них будут весьма схожи. Основными характеристиками здесь будет пропускная способность шины памяти, тип видеопамяти, объём видеопамяти и латентность. Теперь пройдёмся более подробно по каждому из пунктов характеристик:

    1. Пропускная способность шины памяти:

    Пропускная способность шины памяти определяет количество передаваемых данных в единицу времени. Она определяется разрядностью шины и тактовой частотой работы памяти.

    Соответственно, чем больше будет разрядность, тем эффективней будет работа всей видеосистемы. В современных видеокартах разрядность шины колеблется от 64 бит (для офисных компьютеров) до 768 бит (для геймерских систем и оверклокинга). Ну а частота памяти современных видеокарт превышает отметку в 1300 МГц.

    Пропускная способность шины памяти = тактовая частота памяти х разрядность шины. Давайте посчитаем пропускную способность шины памяти , к примеру, для видеокарты AMD Radeon HD 7970 . Частота памяти данного девайса = 1375 МГц, но так как тип памяти GDDR5 , то мы умножаем реальную частоту на 4 и получаем эффективную частоту 5500 МГц. Разрядность шины памяти составляет 384 бита (48 байт). Нехитрыми вычислениями находим: 5500 х 48 = 264 Гбайт/c. Вот мы и нашли пропускную способность шины памяти, которая для данной модели составляет 264 Гбайт/c. Отмечу, что это одна из топовых видеокарт данной линейки и стоит она не дешёво, поэтому не пугайтесь, если показатели вашей видеокарты, более старой версии, смотрятся «блекло» на фоне этих результатов.


    Рис. Видеокарта AMD Radeon HD 7970

    2. Тип видеопамяти:

    В современных видеокартах используется тип памяти GDDR5, до этого были соответственно GDDR4, GDDR3, GDDR2. Как вы уже заметили, названия типов видеопамяти очень схожи с названия типов оперативной памяти (DDR2, DDR3), к ним лишь добавилась буква “G” (GDDR5 – Graphics Double Data Rate 5). Но если названия похожи, то структура и функциональность значительно различается. Стоит понимать, что оперативную память типа DDR3 по структуре и функциональным возможностям нельзя приравнивать к GDDR3, её скорее можно поставить в одну нишу с GDDR5 (и то частично)

    3. Объём видеопамяти:

    Как говорится: «Памяти много не бывает». Да действительно, если объём видеопамяти будет составлять 128 Мбайт, то графический процессор будет простаивать в ожидании новой «порции» данных, поэтому если вы желаете комфортно играть в новые и требовательные к ресурсам компьютера игры, то при покупке видеокарты, вам следует обращать взор на модели с объёмом памяти 1Гбайт и более. При этом не следует забывать и о разрядности шины , а также о частоте памяти. Ведь с разрядностью шины 64 бита, 1 Гбайт объема видеопамяти огромной «радости» не принесут – скорее разочарование:). Поэтому не стоит «клевать» на дешёвые и «объёмные» решения на рынке видеокарт , а стоит соблюдать баланс между всеми характеристиками для того чтобы добиться максимальной эффективности за оптимальную цену.

    4. Латентность:

    Латентность – это время выборки данных из памяти, чем меньше данный параметр, тем лучше, так как не будут наблюдаться значительные задержки при обращении к памяти. У современных видеокарт латентность схем памяти составляет менее 1-2 нс.

    Вот мы и ознакомились с основными параметрами (характеристиками) видеокарт. Цена видеокарты может колебаться в различных пределах в зависимости от характеристик.
    Всего наилучшего!



    Предыдущая статья: Следующая статья:

    © 2015 .
    О сайте | Контакты
    | Карта сайта